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The fluid–structure interaction of resonating microcantilevers immersed in fluid has
been widely studied and is a cornerstone in nanomechanical sensor development. In
many applications, fluid damping imposes severe limitations by strongly degrading
the signal-to-noise ratio of measurements. Recently, Burg et al. (Nature, vol. 446,
2007, pp. 1066–1069) proposed an alternative type of microcantilever device whereby
a microfluidic channel was embedded inside the cantilever with vacuum outside.
Remarkably, it was observed that energy dissipation in these systems was almost
identical when air or liquid was passed through the channel and was 4 orders
of magnitude lower than that in conventional microcantilever systems. Here, we
study the fluid dynamics of these devices and present a rigorous theoretical model
corroborated by experimental measurements to explain these observations. In so
doing, we elucidate the dominant physical mechanisms giving rise to the unique
features of these devices. Significantly, it is found that energy dissipation is not a
monotonic function of fluid viscosity, but exhibits oscillatory behaviour, as fluid
viscosity is increased/decreased. In the regime of low viscosity, inertia dominates
the fluid motion inside the cantilever, resulting in thin viscous boundary layers –
this leads to an increase in energy dissipation with increasing viscosity. In the high-
viscosity regime, the boundary layers on all surfaces merge, leading to a decrease
in dissipation with increasing viscosity. Effects of fluid compressibility also become
significant in this latter regime and lead to rich flow behaviour. A direct consequence
of these findings is that miniaturization does not necessarily result in degradation in
the quality factor, which may indeed be enhanced. This highly desirable feature is
unprecedented in current nanomechanical devices and permits direct miniaturization
to enhance sensitivity to environmental changes, such as mass variations, in liquid.

1. Introduction
The dynamic properties of micromechanical structures immersed in fluid underpin

a broad range of applications ranging from sensing of environmental conditions

† Email address for correspondence: jsader@unimelb.edu.au
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Figure 1. Illustration of fluid channel embedded microcantilever. (a) Perspective (top): layout
of the embedded fluid channel, which is normally closed and shown open here for illustration.
Side view (bottom): cantilever structure (grey) showing cantilever length L and length of rigid
lead channel Lc . Fluid channel is completely filled with fluid (blue). Cantilever end is simplified
for modelling purposes: the cantilever tip is closed. (b) Application to measure the mass of
a single cell. Position of the cell (red) as it flows through the fluid channel (blue) defines a
transient resonant frequency change, the magnitude of which is proportional to the buoyant
mass of the cell. Position 1, cell enters the suspended part of the channel; position 2, cell
reaches the apex of the cantilever; position 3, cell exits the suspended channel.

with extreme precision (Berger et al. 1997; Lavrik, Sepaniak & Datkos 2004) to
imaging with molecular and atomic resolution (Binnig, Quate & Gerber 1986; Fukuma
et al. 2005). Importantly, the intrinsic flow properties of such small devices differ
considerably from those of their macroscale counterparts, which in turn strongly
affects their dynamics. One field where this is broadly evident is in the fluid dynamics
of oscillating microcantilevers, which is strongly influenced by the effects of viscosity;
this contrasts to macroscale cantilevers whose dynamics are very weakly affected by
fluid viscosity (e.g. Chu 1963; Lindholm et al. 1965; Landweber 1967; Crighton 1983;
Fu & Price 1987; Sader 1998; Chon, Mulvaney & Sader 2000; Naik, Longmire &
Mantell 2003; Paul & Cross 2004; Clarke et al. 2005; Green & Sader 2005; Basak,
Raman & Garimella 2006). Quality factors of microcantilevers thus are orders of
magnitude smaller than those of macroscale cantilevers (Butt et al. 1993), and energy
dissipation is strongly and monotonically enhanced with miniaturization (Sader 1998).
Because the quality factor ultimately determines the precision to which small changes
in resonant frequency can be measured, this presents significant challenges in using
microcantilevers as sensors in liquid environments, where the quality factor often is
of order unity (Butt et al. 1993).

Recently, it has been demonstrated that microcantilevers which incorporate a
microfluidic channel in their interior can address this shortcoming. When filled with
water and surrounded by vacuum, such devices have been shown to exhibit quality
factors as high as 10 000 (Burg et al. 2007); see figure 1(a). Such quality factors
are comparable to those of macroscale cantilevers (metres in length) and orders of
magnitude higher than conventional microcantilevers (sub-millimetre lengths) in fluid.
This ensures a very pure resonance that greatly enhances the signal-to-noise ratio of
resonant frequency measurements.
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These vacuum-packaged microfluidic cantilever devices have enabled precise
weighing of surface-adsorbed layers of biomolecules (Burg & Manalis 2003), cells and
particles suspended in fluid (Burg et al. 2007). Specifically, measurements of particle
mass are conducted by flowing a dilute suspension of particles through the resonator
while measuring the shift in resonant frequency. When particles reach the tip, the
frequency shift is at a maximum, and the magnitude of this shift informs about the
buoyant mass of the particle; see figure 1(b). Particles can be prevented from sticking
by appropriate surface treatment. On the other hand, molecular adsorption is detected
by continuously flowing a solution through the channel and using the resonant
frequency to monitor mass build-up due to surface adsorption. Other applications
of fluid-filled microresonators include measurement of fluid density and mass flow
on the microscopic (Enoksson, Stemme & Stemme 1996; Westberg et al. 1997;
Sparks et al. 2003) and macroscopic scale (e.g. Mettler-Toledo DE51, Switzerland,
http://www.mt.com). Efforts are currently being directed towards measuring subtle
changes in single cell growth properties and to the miniaturization of the microchannel
to enable the weighing of single viruses and ultimately single molecules.

Significantly, it was observed that the quality factor, and hence energy dissipation, in
these devices was unchanged when air or water was passed through the embedded fluid
channel. Such behaviour is unprecedented and is in stark contrast to conventional
microcantilevers whose quality factor drops by 2 orders of magnitude when the
surrounding fluid is changed from air to water (Butt et al. 1993). Here, we theoretically
study motion of the fluid contained inside these new devices and explore the rich
behaviour that emerges from such structures. In so doing, we discover that the
complexity in flow dynamics of such devices greatly exceeds that of oscillating
microcantilevers immersed in fluid.

The theoretical model is derived within the framework of Euler–Bernoulli beam
theory (Timoshenko & Young 1968) that implicitly assumes a beam of infinite length
relative to its width/thickness. The effects of shear deformation in the beam are
thus neglected. A commensurate treatment of the fluid flow in this asymptotic limit
is also given, ensuring a self-consistent treatment of the fluid–structure interaction.
The effects of both fluid density and viscosity are considered, in line with previous
treatments of the vibration of microcantilevers immersed in fluid (e.g. Sader 1998;
Paul & Cross 2004). In contrast, however, the effects of fluid compressibility are
also included and found to be of paramount importance in certain practical cases.
This milieu of competing effects results in extremely rich flow behaviour that is
not seen in the complementary problem of a microcantilever immersed in fluid. The
result is that energy dissipation is not a monotonically increasing function of the
fluid viscosity, as may be expected intuitively. This has significant implications to
miniaturization, allowing for a reduction in energy dissipation which is unparalleled
in micromechanical systems.

Importantly, the model focuses on energy dissipation due to the fluid motion only,
and neglects the effects of structural dissipation in the solid cantilever structure. This
latter dissipative mechanism can comprise numerous effects, such as thermoelastic
dissipation, clamping losses, internal friction, and damping due to residual gas present
in the vacuum cavity surrounding the cantilever (Yasumura et al. 2000). The combined
contributions from these various effects are still poorly understood, but are expected
to be approximately constant if the resonant frequency is varied only slightly (the
practical case). The coupling of the fluid to these effects has not been explored in the
literature, and is thus ignored in this study.

Using this theoretical model, we explain the prominent features of experimental
measurements reported in a companion study (Burg, Sader & Manalis 2009), provide
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a quantitative comparison and theoretically explore the various flow regimes and flow
properties in detail. Good agreement is found between this leading order theory and
measurement, and the practical implications of the theoretical findings are discussed.
Most strikingly, non-monotonicity of the quality factor with increasing fluid viscosity
is accurately captured. In so doing, the new theoretical model elucidates the dominant
underlying fluid physics giving rise to this unique behaviour. It is found that position-
ing of the fluid channel in the beam cross-section strongly affects the flow dynamics
and hence the energy dissipation. This can lead to significant modification of the flow
field in the embedded channel through the effects of fluid compressibility and signi-
ficant enhancement of the pressure. Interestingly, it is found that through appropriate
adjustment of the beam/channel dimensions and operating conditions, fluid pressures
in the vicinity of 1 atm are possible, as we shall discuss. This has obvious implications
to the generation of cavitation bubbles, which may find use in practical application.

We begin by summarizing the principal assumptions used in the theoretical model.
This is followed by decomposition of the flow problem into an on-axis and off-axis
problem, corresponding to placement of the fluid channel on and away from the beam
neutral axis, respectively. The two sub-problems are then solved separately and later
combined to obtain the complete flow field. We focus our discussion on the energy
dissipation, while explaining the underlying physical mechanisms giving rise to its
most important features. After this discussion, we provide a detailed comparison with
available experimental measurements and close with a brief synopsis of theoretical
considerations for further work.

2. Theory
The quality factor is defined as

Q = 2π
Estored

Ediss/cycle

∣∣∣∣
ω=ωR

, (1)

where Estored is the maximum energy stored in the beam, Ediss/cycle is the energy
dissipated per cycle and ωR is the radial resonant frequency. Throughout, we focus
on the quality factor due to dissipation in the fluid channel only.

Consider a rectangular cantilever with a thin embedded channel that contains fluid;
see figure 2. The model is derived under the following geometric assumptions:

(a) Cantilever length L is much larger than its width bcant and thickness hcant .
(b) Fluid channel thickness hfluid is much smaller than the channel width bfluid – as

a leading order approximation, we take the formal limit hfluid/bfluid → 0 throughout.
(c) Fluid channel spans the entire length of the cantilever L and the cantilever is

vibrating in its fundamental mode.
(d ) The lead channel of length Lc within the substrate of the chip is rigid.
(e) The amplitude of oscillation is much smaller than any geometric length scale

of the beam, so that the convective inertial term in the Navier–Stokes equation can
be ignored and linear motion and flow is ensured (Sader 1998).

Assumption (b) enables the embedded fluid channel to be represented by a single
channel whose total width is the sum of the two parallel channels widths; cf. figures 1
and 2. As a direct consequence of assumption (a), the deformation of the beam
material can be described formally using Euler–Bernoulli beam theory (Timoshenko &
Young 1968). The displacement field is then given by

u(x, z, t) = W (x, t) ẑ − z
∂W

∂x
x̂, (2)
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Figure 2. Schematic illustration of rectangular cantilever (x > 0) with embedded fluid channel
and rigid lead channel (x < 0) showing dimensions. Origin of Cartesian coordinate system is
centre-of-mass of clamped end.

where W (x, t) is the deflection function of the beam; W is zero inside the rigid lead
channel.

Because we are examining oscillatory motion, all dependent variables (denoted by
X) are then expressed in terms of the explicit time dependence e−iωt , such that

X(x, z, t) = X̃(x, z|ω)e−iωt ,

where ω is the radial frequency, t is time and i is the usual imaginary unit. For
simplicity we shall henceforth omit the superfluous ‘∼’ notation, noting that the
above relation holds universally. Consequently, the velocity field of the beam in (2)
becomes

v
(
x, z|ω

)
= −iω

(
W (x|ω) ẑ − z

∂W

∂x
x̂
)

. (3)

The fluid flow problem in the channel is to be solved subject to the solid boundary
conditions specified in (3) by invoking the usual no-slip condition: the deflection
function of the beam is independent of the fluid – the elastic modulus of common
liquids is 2 orders of magnitude smaller than that of the solid cantilever walls and
the stress generated in the fluid is much smaller than that in the solid.

Because the flow problem is linear it can be separated into two sub-problems, as
illustrated in figure 3. The ‘on-axis’ sub-problem is identical to the flow when the
channel midplane lies on the neutral axis of the beam (z0 = 0), and the ‘off-axis
correction’ sub-problem gives the additional flow due to off-axis placement of the
channel (z0 �= 0). We will solve these problems separately and later combine them to
obtain the complete flow that includes the effects of off-axis channel placement.
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Figure 3. Schematic showing (a) the complete flow problem and its decomposition into
(b) the on-axis flow problem, plus (c) the off-axis correction. The figures show a segment of
the side view of the channel and give the flow boundary conditions and dimensions.

2.1. On-axis placement of channel

Because the flow field for the on-axis sub-problem is independent of z0, we set z0 = 0
for simplicity. This corresponds to the case where the channel midplane lies on the
neutral axis of the beam, the flow problem for which is illustrated in figure 3(b).

We scale all dimensions of the flow field by the fluid channel thickness hfluid , and
denote all scaled variables with an overscore. For simplicity, we make the following
definitions:

U (x̄|ω) = −iωW (x̄|ω), (4a)

β =
ρωh2

fluid

μ
, (4b)

where the latter parameter is the Reynolds number (Batchelor 1974) and indicates
the importance of fluid inertia; geometrically, it corresponds to the squared ratio of
channel thickness to the viscous penetration depth. In (4b), ρ is the fluid density and
μ is the fluid shear viscosity. The convention adopted for the Reynolds number is in
line with Batchelor (1974) and is also referred to under alternate names such as the
inverse Stokes or Womersley number. We note that the Reynolds number is often
associated with the nonlinear convective inertial term of the Navier–Stokes equation.
This latter convention has not been adopted here.
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Locally, at any point along the beam, the function U (x̄|ω) can be expanded as

U (x̄|ω) = U0 + A(x̄ − x̄0) + B(x̄ − x̄0)
2 + · · · , (5)

where

A = −iωhfluid

dW

dx

∣∣∣∣
x=x0

. (6)

Importantly, since the length scale of the deflection function is the beam length L,
it then follows that the quadratic term in (5) is O(hfluid/L) smaller than the linear
term. Consequently, in the formal limit of hfluid/L → 0, which is implicitly specified
in assumption (a), (5) becomes

U (x̄|ω) = U0 + A(x̄ − x̄0) + O((hfluid/L)2),

which from (3) and (4a) gives the following expression for the beam velocity:

v = U0 ẑ + A (−z̄x̂ + (x̄ − x̄0) ẑ) . (7)

We then solve the linearized Navier–Stokes equation in accordance with assump-
tion (e),

∇ · v = 0, −iωρv = −∇P + μ∇2v, (8)

subject to the above boundary conditions, where v is the velocity field and P is
the pressure. To begin, we note that the solution to the corresponding inviscid flow
problem, satisfying the velocity components normal to the surfaces only (i.e. in the
z direction), is

vinv = Az̄x̂ + (U0 + A(x̄ − x̄0)) ẑ, P = iρωhfluid (U0 + A(x̄ − x̄0))z̄. (9)

However, this solution violates the velocity boundary conditions in the x direction
at the channel walls. We therefore express the complete solution as the sum of
this inviscid flow problem and a correction velocity in the x direction satisfying the
continuity equation

v = vinv + M(z̄)x̂. (10)

Substituting (9) and (10) into (8) then yields the required governing equation and
boundary conditions for M(z̄)

−iβM =
d2M

dz̄2
, M |z̄=±1/2 = ∓A, (11)

for which the solution is

M(z̄) = −A

sinh

(
(1 − i)

√
β

2
z̄

)

sinh

(
1 − i

2

√
β

2

) . (12)

Substituting (12) into (10) gives the required exact solution for the complete velocity
field

v = A

⎛
⎜⎜⎜⎜⎝z̄ −

sinh

(
(1 − i)

√
β

2
z̄

)

sinh

(
1 − i

2

√
β

2

)
⎞
⎟⎟⎟⎟⎠ x̂ + (U0 + A(x̄ − x̄0)) ẑ, (13)
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where the pressure P remains unchanged from the inviscid flow result in (9) for
arbitrary β . The rate-of-strain tensor can then be immediately calculated to give

e = −iω

⎛
⎜⎜⎜⎜⎝1 − 1 − i

2

√
β

2

cosh

(
(1 − i)

√
β

2
z̄

)

sinh

(
1 − i

2

√
β

2

)
⎞
⎟⎟⎟⎟⎠

dW

dx

∣∣∣∣
x=x0

(x̂ ẑ + ẑ x̂). (14)

The energy dissipated per cycle per unit volume in the fluid is obtained using
(Batchelor 1974)

Ediss/cycle/volume =
2πμ

ω

(
e : e∗ − 1

3
|tr e|2

)
, (15)

where the asterisk (∗) refers to the complex conjugate. Substituting (14) into (15),
making use of the deflection function for the fundamental mode of a cantilever beam
according to Euler–Bernoulli theory and integrating (15) over the volume of the fluid
channel gives the energy dissipated per cycle in the fluid. Substituting this result into
(1) gives the required expression for the quality factor

Q = F (β)
ρcant

ρ

(
hcant

hfluid

) (
bcant

bfluid

)(
L

hfluid

)2

, (16)

where, for the fundamental mode of vibration,

F (β) = 0.05379β

⎛
⎜⎜⎜⎜⎜⎝

∫ 1/2

−1/2

∣∣∣∣∣∣∣∣∣∣
1 − 1 − i

2

√
β

2

cosh

(
(1 − i)

√
β

2
s

)

sinh

(
1 − i

2

√
β

2

)
∣∣∣∣∣∣∣∣∣∣

2

ds

⎞
⎟⎟⎟⎟⎟⎠

−1

, (17)

and ρcant is the cantilever average density. Below, we consider the limits of small and
large inertia to investigate the physical significance of this result.

2.1.1. Small β limit

We now consider the limit of small inertia (β 	 1). The velocity field in this case is
given by

v = U0 ẑ + A(−z̄x̂ + (x̄ − x̄0) ẑ) + β
Ai

12
(4z̄3 − z̄)x̂ + O(β2). (18)

Physically, the first term in (18), U0 ẑ, corresponds to the vertical rigid-body translation
of the beam, the second term, A(−z̄x̂ + (x̄ − x̄0) ẑ), corresponds to the rigid-body
rotation and the third term corresponds to the leading-order effect due to fluid
inertia. Note that if inertia is negligible (β → 0), then the fluid undergoes a rigid-
body displacement and rotation. Thus, energy dissipation is associated with non-zero
inertial effects. This is discussed in § 3.

The rate-of-strain tensor can be evaluated directly from (15) and (18) to give

e =
1

2
ωβ

((
z

h

)2

− 1

12

)
dW

dx

∣∣∣∣
x=x0

(x̂ ẑ + ẑ x̂) + O(β2). (19)

It then follows that the required asymptotic form for the function F (β) defined in the
quality factor, (16), is

F (β) =
38.73

β
, β 	 1. (20)
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Equation (20) is the result we seek in the limit of small β , i.e. small fluid inertia.
Below, we consider the opposite limit of large fluid inertia (β 
 1).

2.1.2. Large β limit

In the limit of β → ∞, flow in the channel is given by the corresponding inviscid flow
problem (away from the surfaces). Applying the normal velocity boundary condition
in figure 3(b) gives the required result for the velocity field in (9):

v = Az̄x̂ + (U0 + A(x̄ − x̄0)) ẑ. (21)

Note that this results in a tangential flow (i.e. along the x direction) that is opposite
in sign to the wall tangential velocities at z̄ = ±1/2; cf. (7) for the solid wall velocity
with (21). As such, for large β there must exist a viscous boundary layer near each
surface so that the complete boundary conditions at the surfaces are satisfied. The
complete solution that accounts for the viscous boundary layers at z̄ = ±1/2 in this
limit is obtained trivially from the exact solution in (13) to give

v = A

(
z̄ − 2 exp

(
−1 − i

2

√
β

2

)
sinh

(
(1 − i)

√
β

2
z̄

))
x̂ + (U0 + A(x̄ − x̄0)) ẑ. (22)

The rate-of-strain tensor can then be immediately calculated:

e = −iω

(
1 − (1 − i)

√
β

2
exp

(
−1 − i

2

√
β

2

)
cosh

(
(1 − i)

√
β

2
z̄

))
dW

dx

∣∣∣∣
x=x0

(x̂ ẑ + ẑ x̂).

(23)

Substituting (23) into (15), integrating the result over the fluid channel volume,
neglecting all terms exponentially small in β and substituting the result into (1) gives
the required expression for F (β):

F (β) = 0.1521
√

β, β 
 1. (24)

Equation (24) is the leading-order result in the asymptotic limit β 
 1.

2.2. Off-axis placement of channel

We now turn our attention to investigating flow in the off-axis problem. To calculate
the effect of off-axis channel placement, we consider the complete system that includes
the channel inside the cantilever and the rigid channel leading into the cantilever;
see figure 2. Consideration of the lead channel is imperative because the reference
pressure is in the reservoir and not at the entrance to the actual cantilever. The length
of the rigid lead channel is defined to be Lc, and the origin of the coordinate system
is at the clamped end of the cantilever; see figures 1(a) and 2. A schematic of the
off-axis flow problem is given in figure 3(c).

Importantly, this problem corresponds to extension and compression of a half-
sealed channel, and therefore results in pumping of the fluid into and out of the
lead channel/cantilever system. Because high pressures can be generated in such
a configuration, we consider the case of viscous compressible flow. The governing
equations in the time domain are

∂ρ

∂t
+ ρ∇ · v = 0, ρ

∂v

∂t
= −∇P + μ∇2v +

1

3
μ∇ (∇ · v) , (25)

where the limit of small amplitude has been implicitly assumed (assumption (e)) and
the Stokes hypothesis has been invoked, i.e. the bulk viscosity μB is set to zero. In



224 J. E. Sader, T. P. Burg and S. R. Manalis

this (linear) limit of small amplitude, the corresponding equation of state for the fluid
is

ρ = ρ0 + ρ0κP, (26)

where κ is the compressibility of the fluid and is related to the speed of sound c by
κ = 1/(ρ0c

2), and ρ0 is the fluid density at ambient pressure (P = 0). Substituting (26)
into (25), and noting the time ansatz used previously, gives

∇ · v = iωκP, −iωρ0v = −
(

1 − 1

3
iμωκ

)
∇P + μ∇2v. (27)

Importantly, as the channel walls move in the x direction, the total volume within the
channel will vary. We therefore express the fluid velocity field v in terms of a reduced
velocity V such that

v = v|x=L + V , (28)

leading to zero reduced velocity at the free end of the cantilever. The boundary
conditions at the channel walls for this reduced velocity V are then

V |z=z0±hfluid /2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

iωz0

(
dW

dx
− dW

dx

∣∣∣∣
x=L

)
x̂ : 0 � x � L,

−iωz0

dW

dx

∣∣∣∣
x=L

x̂ : −Lc � x < 0.

(29)

By ensuring the reduced velocity is zero at x = L, this approach inherently accounts
for the effects of volume change in the channel: the reduced problem formally
corresponds to a channel that is held fixed at its closed end, whose sidewalls are
straining in their plane in an infinite fluid reservoir. The governing equation for this
reduced problem is

∇ · V = iωκP, −iωρ0V = −
(

1 − 1

3
iμωκ

)
∇P + μ∇2V − ρ0ω

2z0

dW

dx

∣∣∣∣
x=L

x̂. (30)

Because the cantilever length L greatly exceeds the channel thickness hfluid , we scale
the x coordinate by L and the z coordinate by hfluid . We also choose the pressure
scale appropriate for the low inertia limit, and the velocity scales from the boundary
conditions and the continuity equation. This leads to the following set of scales:

xs = L, zs = hfluid , us = iωz0

dW

dx

∣∣∣∣
x=L

, ws =
hfluid

L
us, Ps =

μusL

h2
fluid

, (31)

where the subscript s indicates a scaling. Note that the scaling for x differs from
that used for the on-axis flow problem. Substituting (31) into (30) and noting that
L 
 hfluid (assumptions (a) and (b)) gives the required leading-order scaled governing
equations:

∂ū

∂x̄
+

∂w̄

∂z̄
= iαP̄ , −iβ(1 + ū) = −dP̄

dx̄
+

∂2ū

∂z̄2
, (32)

where the velocity field V = ux̂ +w ẑ, an overscore indicates a scaled variable, and the
following dimensionless variables naturally arise:

β =
ρ0ωh2

fluid

μ
, γ =

(
ωL

c

)2

, α =
γ

β
. (33)
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We emphasize that only two independent dimensionless parameters exist in the
governing equations, and the third is a construct of these parameters; see (33). These
three dimensionless parameters can be interpreted as follows:

(i) β is the squared ratio of the channel thickness to the viscous penetration depth
and indicates the importance of fluid inertia. This corresponds to the Reynolds number,
and is identical to the on-axis problem.

(ii) γ is the squared ratio of the cantilever length to the acoustic wavelength
(multiplied by a constant) and indicates the importance of acoustic effects. This is
termed the normalized wavenumber.

(iii) α is the ratio of γ and β and dictates when fluid compressibility significantly
affects the flow due to variations in fluid density via the pressure. This is termed the
compressibility number and is proportional to the dilation of a fluid element.

Note that (32) is correct to leading order for small hfluid/L and also establishes that
the pressure is independent of z in this limit. Importantly, the formal limit hfluid/L → 0
is consistent with Euler–Bernoulli beam theory and is therefore used throughout. It
is also seen from (30) and (32) that fluid compressibility κ does not appear explicitly
in the momentum equation within this lubrication limit. This establishes that use of
the Stokes hypothesis is inconsequential here, and the bulk viscosity μB has no effect.

To solve (32), we search for a solution satisfying the continuity equation of the
form

ū(x̄, z̄) = f (x̄)k′(z̄) + h(x̄), w̄(x̄, z̄) = −f ′(x̄)k(z̄), (34)

where the functions f (x̄), h(x̄) and k(z̄) are to be determined. Equation (34) makes
use of the Helmholtz decomposition of a general vector field. Substituting (34) into
(32) then gives

dh

dx̄
= iαP̄ ,

dP̄

dx̄
= Bf (x̄) + iβ[1 + h(x̄)], (35a)

k′′′(z̄) + iβk′(z̄) = B, (35b)

f (x̄) = S(x̄) − h(x̄), (35c)

where B is a constant, and the boundary conditions for k(z̄) are obtained by invoking
the usual no-slip conditions at the channel walls

k

(
±1

2

)
= 0, k′

(
±1

2

)
= 1, (36)

where

S(x̄) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 +

dW

dx̄
dW

dx̄

∣∣∣∣
x̄=1

: 0 � x̄ � 1,

−1 : −L̄c � x̄ < 0.

(37)

Solving (35b) and (36) yields the solution for k,

k(z̄) =

sinh

(
(1 − i)

√
β

2
z̄

)
− 2z̄ sinh

(
1 − i

2

√
β

2

)

(1 − i)

√
β

2
cosh

(
1 − i

2

√
β

2

)
− 2 sinh

(
1 − i

2

√
β

2

) , (38a)
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and the constant B,

B =

−2iβ sinh

(
1 − i

2

√
β

2

)

(1 − i)

√
β

2
cosh

(
1 − i

2

√
β

2

)
− 2 sinh

(
1 − i

2

√
β

2

) , (38b)

where

z̄ =
z − z0

hfluid

. (39)

Substituting (35c) into (34) then gives the required velocity field

ū(x̄, z̄) = [S(x̄) − h(x̄)]k′(z̄) + h(x̄), w̄(x̄, z̄) = −[S ′(x̄) − h′(x̄)]k(z̄), (40)

where the governing equation for h(x̄) is obtained from (35a) and (35c)

d2h

dx̄2
+ α(β + iB)h = iαBS(x̄) − αβ. (41)

The boundary conditions for (41) are then obtained by (i) ensuring that the pressure
at the inlet to the channel (x̄ = − L̄c) equals the ambient pressure in the reservoir and
(ii) the x component of the reduced velocity is zero at the free end of the cantilever
(x̄ =1):

h′(−L̄c) = h(1) = 0. (42)

Note that there will be a slight pressure drop within the reservoir up to the inlet to
the rigid lead channel at x̄ = − L̄c. However, in the limit hfluid/L → 0, this is negligible
in comparison to the pressure drop over the channel length and is formally ignored
to leading order.

The solution to (41) and (42) is easily evaluated using the Green’s function method
to yield

h(x̄) = − α

M cos[M(1+L̄c)]

{
sin[M(1 − x̄)]

∫ x̄

−L̄c

[iBS(x ′) − β] cos[M(x ′ + L̄c)]dx ′

+ cos[M(x̄ + L̄c)]

∫ 1

x̄

[iBS(x ′) − β] sin[M(1 − x ′)]dx ′
}

, (43)

where

M =
√

α(β + iB), (44)

and the scaled pressure is obtained from (35a)

P̄ =
1

iα

dh

dx̄
. (45)

The rate-of-strain tensor for this velocity field is

e =
iωz0

2hfluid

dW

dx

∣∣∣∣
x=L

[S(x̄) − h(x̄)]k′′(z̄)(x̂ ẑ + ẑ x̂) + O

(
hfluid

L

)
. (46)

2.2.1. Incompressible flow (α → 0)

We now examine the limit of incompressible flow. First, we note that the function
h(x̄) = 0 in this limit, and the reduced velocity field becomes

ū(x̄, z̄) = S(x̄)k′(z̄), w̄(x̄, z̄) = −S ′(x̄)k(z̄). (47)
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The corresponding expression for the scaled pressure gradient is

dP̄

dx̄
= BS(x̄) + iβ, (48)

where P̄ (−L̄c) = 0 is the (ambient) inlet pressure condition.
The required solution for the velocity field v in the (original) inertial frame of

reference of the cantilever is then obtained from (28), (31) and (40):

v = iωz0

dW

dx

∣∣∣∣
x=L

{
[1 + S(x̄)k′(z̄)]x̂ − hfluid

L
S ′(x̄)k(z̄) ẑ

}
. (49)

Note that the z component of the velocity in (49) is O(hfluid/L) smaller than the x
component, and hence negligible to leading order. Importantly, this analysis implicitly
includes the lead channel of length Lc attached to the cantilever, and it is assumed
that the entire lead channel/cantilever channel system is connected to an infinite fluid
reservoir where the pressure is constant (to leading order).

2.2.2. Compressible flow (α > 0)

Now, we examine the effects of compressibility on the flow within the channel. In
this case, the velocity profile in the original inertial frame of reference is

v =
iωz0

L

dW

dx̄

∣∣∣∣
x̄=1

{
[1 + h(x̄) + {S(x̄) − h(x̄)}k′(z̄)]x̂ − hfluid

L
[S ′(x̄) − h′(x̄)]k(z̄) ẑ

}
,

(50)

whereas the (unscaled) pressure is obtained from (31) and (45),

P = ρ0ω
2z0

dW

dx̄

∣∣∣∣
x̄=1

(
1

γ

dh

dx̄

)
. (51)

Note that the volume flux q entering the system is given by

q =
iωz0hfluidbfluid

L
[1 + h(−L̄c)]

dW

dx̄

∣∣∣∣
x̄=1

. (52)

In the limit of infinite compressibility, from (37) and (41) we find

h(x̄) = −1, α → ∞, (53)

and hence from (52) the volume flux W is zero, as expected.

2.3. Complete flow within the fluid channel

The complete flow field within the channel can now be calculated using the principle
of linear superposition by adding the results for the on-axis and off-axis sub-problems.
The total rate-of-strain tensor is obtained from (13) and (50):

e = −iω

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝1 − 1 − i

2

√
β

2

cosh

(
(1 − i)

√
β

2
z̄

)

sinh

(
1 − i

2

√
β

2

)
⎞
⎟⎟⎟⎟⎠

dW

dx
− z0

2hfluid

dW

dx

∣∣∣∣
x=L

× k′′(z)[S(x̄) − h(x̄)]

⎫⎪⎪⎬
⎪⎪⎭ (x̂ ẑ + ẑ x̂). (54)
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The quality factor can then be easily calculated using (15) to give

Q = F (β)
ρcant

ρ

(
hcant

hfluid

) (
bcant

bfluid

)(
L

hfluid

)2

, (55)

where, for an arbitrary mode of vibration described by W,

F (β) =
β

16

∫ 1

−L̄c

∫ 1/2

−1/2

|G(X, Z)|2dZ dX

, (56a)

G(X, Z) =

⎛
⎜⎜⎜⎜⎝1 − 1 − i

2

√
β

2

cosh

(
(1 − i)

√
β

2
Z

)

sinh

(
1 − i

2

√
β

2

)
⎞
⎟⎟⎟⎟⎠

dW̄

dX
+

iβZ̄0

2

×

⎛
⎜⎜⎜⎜⎝

sinh

(
(1 − i)

√
β

2
Z

)

(1 − i)

√
β

2
cosh

(
1 − i

2

√
β

2

)
− 2 sinh

(
1 − i

2

√
β

2

)
⎞
⎟⎟⎟⎟⎠[S(x̄) − h(x̄)]

dW̄

dX

∣∣∣∣
X=1

,

(56b)

X =
x

L
, Z =

z − z0

hfluid

, Z̄0 =
z0

hfluid

, (56c)

where W̄ (X) is the normalized deflection function, such that W̄ (1) = 1. Equations
(55) and (56) give the required result for the fluid channel embedded cantilever,
which accounts for both on-axis and off-axis placement of the channel. The physical
implications of this result will be explored in the next section together with a
comparison to experimental measurements.

3. Results and discussion
We now examine the physical consequences of the above analysis and initially

consider the case of on-axis placement of the channel. Throughout, we focus on the
function F (β) when discussing the quality factor Q, because these quantities are trivi-
ally related via the geometric and material properties of the cantilever/fluid system;
see (55). The function F (β) shall henceforth be termed the ‘normalized quality factor’.

3.1. On-axis flow problem

A comparison of the asymptotic solutions for F (β) in (20) and (24) and the exact
solution in (16) is given in figure 4. Note that the exact solution follows the correct
asymptotic behaviour in the limits of small and large Reynolds number β , as required.
Interestingly, the quality factor exhibits a non-monotonic dependence on β: (i) for
β 	 1, the quality factor increases with decreasing β , whereas (ii) for β 
 1, it increases
with increasing β . The result is that the quality factor possesses a global minimum of
F =1.8175 at β = 46.434.

The physical origin of this unusual behaviour can be explained as follows. We
begin by examining the limit of small inertia (β 	 1), which exhibits the apparently
counter-intuitive result that an enhancement in viscosity (reduction in β) reduces
energy dissipation (increases the quality factor). In the formal limit of zero inertia, it
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Figure 4. Plot of the normalized quality factor F (β) for on-axis placement of the channel.
Exact solution (see (16)), small β solution (see (20)) and large β solution (see (24)) are shown.

is seen from (18) that the fluid undergoes a rigid-body displacement and rotation. As
such, the rate-of-strain tensor is zero and the fluid dissipates no energy. However, as
inertia in the system increases (e.g. by either increasing the frequency of oscillation
or decreasing the viscosity) the fluid cannot maintain its rigid-body behaviour and
begins to drive a secondary flow that lags the primary rigid-body motion by 90◦; see
(18). This secondary flow exhibits non-zero rate-of-strain and therefore finite energy
dissipation. The magnitude of this secondary flow increases with increasing inertia.
Consequently, we find that inertia is the mechanism that drives energy dissipation in
the low inertia limit: by increasing inertia we enhance the secondary flow and thus
energy dissipation increases.

In the opposite limit of large inertia (β 
 1), we find that energy dissipation rises
(quality factor drops) with increasing viscosity (decreasing β). This is as one would
expect intuitively and results from the presence of thin viscous boundary layers at the
solid walls of the fluid channel. These thin boundary layers are identical to Stokes
second problem, which dictates that an increase in viscosity increases the thickness of
the viscous boundary layers and hence energy dissipation rises. The behaviour in the
high inertia limit is therefore completely opposite to that for low inertia and leads
immediately to the existence of a minimum in the quality factor (maximum in energy
dissipation) at an intermediate value of inertia (β =46.434).

Physically, the minimum in quality factor corresponds to merging of the viscous
boundary layers as β is reduced, leading to a crossover from high inertia to low inertial
flow. This establishes that the quality factor will decrease to a minimum and then
increase, as the viscosity is systematically increased from the high inertia limit. This
unique feature is of significant practical importance in developing ultra-sensitive
devices through miniaturization, which is not found in conventional cantilevers
immersed in fluid systems (Sader 1998). A brief discussion of higher-order effects
that may manifest themselves in the ultra low inertia limit, which is relevant to
miniaturization, is given below.

In passing, we remind the reader that the analysis presented has been derived
in the formal limit where the channel width greatly exceeds the channel thickness.
For completeness, an analysis of the on-axis problem for arbitrary channel aspect
ratio is given in the Appendix. This shows that finite channel aspect ratio induces a
relatively weak effect, with the above salient features of the quality factor preserved;
see figure 23.

Before proceeding to the off-axis flow, it is pertinent to examine the effects of fluid
compressibility on the on-axis problem. A scaling analysis reveals that compressibility
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will be important provided (
ωL

c

)2 (
hfluid

L

)2

∼ O(1).

Clearly, this condition is violated in the formal limit hfluid/L → 0 at fixed L, which is
implicitly assumed in the above analysis. Importantly, the condition is also violated
in cantilevers used in practice (Burg et al. 2007). This, therefore, establishes that fluid
compressibility is not important for the on-axis flow problem as has been assumed.

3.2. Off-axis flow problem

We now discuss the flow generated by off-axis placement of the channel. We consider
the off-axis problem only, which ignores the contribution from the on-axis flow field.

3.2.1. Incompressible flow

To begin, we examine the singular case of incompressible flow, which corresponds
to α → 0. In the limits of small and large fluid inertia, the velocity field in (49)
becomes

v = iωz0

dW

dx

∣∣∣∣
x=L

x̂

⎧⎪⎨
⎪⎩

1 + S(x̄)

[
6

(
z − z0

hfluid

)2

− 1

2

]
: β → 0

1 : β → ∞
+ O

(
hfluid

L

)
.

(57)
Equation (57) establishes that the velocity field possesses a parabolic distribution
across the channel thickness in the limit of small inertia (β 	 1), as may be expected
intuitively. In the opposite limit of high inertia (β 
 1), the flow field away from the
channel walls is plug flow, with fluid being pumped into and out of the channel in a
rigid-body fashion. This is also expected, because the channel walls will generate thin
viscous boundary layers in this limit allowing the fluid away from the walls to move
synchronously with the end of the cantilever (x = L).

We now present numerical results for the flow field at finite inertia. Throughout,
we consider the case where the length of the rigid lead channel equals the cantilever
length, as in the practical case (Burg et al. 2007, 2009), i.e. Lc = L. In figure 5, results
are given for the velocity profile distribution in the channel corresponding to the
limits of small and large inertia. Note that the shear velocity gradient is greatest in
the rigid lead channel, and decreases as it approaches the end of the cantilever (x = L),
as expected. The corresponding results for the pressure are given in figure 6, where
it is clear that the majority of the pressure drop (increase) occurs within the rigid
lead channel for low inertia, whereas for high inertia the pressure drop is uniformly
distributed over the entire channel.

3.2.2. Compressible flow

Next, we include the effects of compressibility and study how this modifies the
flow field. We again consider the practical case where the length of the rigid lead
channel equals the cantilever length, i.e. Lc = L. Note that practical cantilevers have
a compressibility number α that lies in the range 0.01 <α < 1.

Figure 7 illustrates the effects of fluid compressibility on the velocity field for
moderately small inertia β = 10. Note that compressibility can profoundly affect the
velocity field. A slight increase in compressibility, from the incompressible limit, leads
to a significant increase in fluid velocity entering the channel; see bottom-most traces
in figures 7(a)–7(e). Interestingly, as compressibility is increased further, a maximum
velocity is obtained (figure 7c) which then subsequently decreases.
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Figure 5. Velocity profile (magnitude) within the rigid channel/cantilever system. Variation in
fluid velocity relative to wall velocity for x̄ ∈ [−1, 1] and 	x̄ =0.125. Notes: x̄ = 0 corresponds
to the clamped end of the cantilever. Velocity is scaled differently in rigid lead channel and
cantilever, for presentation only. (a) β = 0.0001, (b) β = 10, (c) β = 100, (d ) β = 1000.
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Figure 6. Normalized pressure profile P̄ (magnitude of (48)) within the rigid channel/
cantilever system. Pressure scale used is Ps = μusL/h2

fluid and is appropriate for the low

inertia incompressible limit, i.e. β 	 1 and α 	 1; see (31). (a) β =0.0001, (b) β =10, β = 100,
β = 1000.

To investigate the origin of this behaviour, we present results for the volumetric
flow rate entering the rigid lead channel in figure 8 as a function of the acoustic
wavenumber γ , for a range of Reynolds numbers β . We remind the reader that
α = γ /β . For low inertia β = 1 (high viscous damping), the volumetric flux is seen
to decrease monotonically with increasing compressibility. However, as damping
is systematically reduced, by increasing β , this monotonicity in the volume flux
disappears and is replaced with clear resonance behaviour. This explains the increase
in fluid velocity observed in figure 7, which is due to the fundamental acoustic
resonance of the cantilever/rigid lead channel system, which occurs at αβ = γ = 0.28
for β = 10.
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Figure 7. Velocity profile (magnitude) within the rigid channel/cantilever system showing
effects of compressibility. Variation in fluid velocity relative to wall velocity for x̄ ∈ [−1, 1]
and 	x̄ = 0.125. Note: x̄ = 0 corresponds to the clamped end of the cantilever. Moderately low
inertia: β =10. (a) α = 0, (b) α = 0.01, (c) α = 0.03, (d ) α = 0.05, (e) α = 0.1.
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Figure 8. Normalized magnitude of volumetric flux into rigid lead channel as a function of
the normalized wavenumber γ . (a) β = 1, (b) β =10, (c) β = 100, (d ) β = 1000. Volumetric flux
scale is qs = ushfluidbfluid .

Note that this resonance behaviour is strongly dependent on β , and for low β

the system can become overdamped, leading to no observed resonance. Indeed, it is
found that for fixed β , the number of resonances is finite, with the system becoming
increasingly damped with increasing mode number, e.g. see figure 8(c), where only six
resonance peaks are present for all γ .



Energy dissipation in microfluidic beam resonators 233

–1

0

1

–1

0

1

x–

0–0.5 0.5
z–

(a)

–1

0

1

–1

0

1

0–0.5 0.5
z–

(b)

–1

0

1

–1

0

1

0–0.5 0.5
z–

(c)

–1

0

1

–1

0

1

0–0.5 0.5
z–

(d)

–1

0

1

–1

0

1

0–0.5 0.5
z–

(e)

Figure 9. Velocity profile within the rigid channel/cantilever system showing effects of
compressibility. Variation in fluid velocity relative to wall velocity for x̄ ∈ [−1, 1] and
	x̄ = 0.125. Note: x̄ = 0 corresponds to the clamped end of the cantilever. Low inertia:
β = 0.0001. (a) α = 0, (b) α =0.01, (c) α =0.03, (d ) α =0.05, (e) α = 0.1.
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Figure 10. Normalized pressure profile P̄ within the rigid channel/cantilever system showing
effects of compressibility. Pressure scale used is Ps = μusL/h2

fluid and is appropriate for

the low inertia limit, i.e. β 	 1 and α 	 1; see (31). Low inertia: β = 0.0001. α = 0.0001,
0.01, 0.03, 0.05, 0.1. (a) Real (in-phase with wall velocity) component; (b) imaginary
(out-of-phase with wall velocity) component; (c) absolute value.

To further illustrate the above-described damping effect, figure 9 presents results
for the velocity field at very low inertia β =0.0001, for which no resonance behaviour
is observed; in contrast to the results presented in figure 7 (for moderately small
inertia), the magnitude of velocity at the channel entrance (x̄ = − 1) decreases
monotonically with α. The corresponding pressure profile throughout the channel
is given in figure 10. Note that as compressibility is increased, i.e. α increases, the
dissipative (real) component of the scaled pressure decreases in magnitude. For
α � 0.03, the pressure gradient reverses sign, which drives the flow in the opposite
direction. This feature is manifested in figure 9. We thus find that the fluid velocity
relative to the wall moves in the opposite direction near the free end of the cantilever
to that in the rigid channel. In contrast, the inertial (imaginary) component of the
pressure increases with increasing α due to the increased elasticity of the fluid system.
The overall effect of compressibility is to reduce the magnitude of the pressure drop
leading to lower volumetric flux into the cantilever.

Although the above variations in parameter space serve to illustrate the dominant
effects of compressibility, through the compressibility number α, they are difficult to
realize experimentally since this would require fluids with different speeds of sound.
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Figure 11. Velocity profile within the rigid channel/cantilever system as viscosity is varied
for fixed fluid density. Variation in fluid velocity relative to wall velocity for x̄ ∈ [−1, 1] and
	x̄ = 0.125. Note: x̄ = 0 corresponds to the clamped end of the cantilever. γ = 0.03. Increasing
β from left to right. (a) β = 0.01, (b) β = 0.03, (c) β = 0.1, (d ) β = 0.3, (e) β = 1, (f ) β = 10.

An alternative approach to enhance the effects of compressibility is to increase the
viscosity while holding the speed of sound and density of the fluid constant. This is
easily achieved in practice, because the speed of sound of most liquids is comparable.
In this case, γ is fixed and β (and hence α = γ /β) changes as the viscosity varies.
We consider the typical case where γ = 0.03 (which is identical to the 3 μm channel
thickness cantilever investigated in § 3.4). Figure 11 shows the velocity profile in the
entire channel system under these conditions.

Note that increasing viscosity corresponds to decreasing β . The effects of fluid
compressibility are clear in figure 11 and demonstrate that they can profoundly
influence the flow. The results for β =1 and β =10 are essentially the incompressible
solution for low β exhibiting parabolic velocity profiles. However, as the viscosity
increases (β decreases), the pressure also increases and ultimately becomes large
enough to significantly compress the fluid. This reduces the volumetric flow rate into
the channel system since the fluid is able to intrinsically accommodate the volume
variations in the cantilever as it oscillates. We also note that flow reversal becomes
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Figure 12. Normalized pressure profile P̄ within the rigid channel/cantilever system showing
effects of compressibility. Pressure scale used is Ps = μusL/h2

fluid/α and is appropriate for the

low inertia compressible limit, i.e. β 	 1 and α = γ /β 
 1. Resonator parameters: γ = 0.03.
β = 0.01, 0.03, 0.1, 0.3, 1, 10. Pressure variation increases with decreasing β . (a) Real (in-phase
with wall velocity) component; (b) imaginary (out-of-phase with wall velocity) component; (c)
absolute value.
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Figure 13. Normalized rate of total energy dissipation per unit cycle for various
γ = 0.01, 0.03, 0.1, 0.3, 1. Observed maxima shift to right in β space with increasing γ in

accord with resonance condition α = γ /β ∼ O(1). Energy scale is Es = 4πρ0Lbfluidhfluid |us |2.

present in the flow and the shear velocity gradients decrease in magnitude as a result
of compressibility.

The velocity variations as a function of viscosity in figure 11 can be understood
through an examination of the pressure distribution in the fluid channel/cantilever
system. Figure 12 shows the (scaled) pressure variation in the whole channel system
under the conditions specified in figure 11; the pressure scaling differs from that
used in figure 10. Note the correlation between the real component of the pressure
(in-phase with the wall velocity) and the velocity behaviour in the fluid. As the
effects of compressibility increase (β decreases), the real component of the pressure
and pressure gradient change sign, and this drives the flow in alternate directions.
Interestingly, the magnitude of this component is approximately independent of β ,
for β � 1. In contrast, the magnitude of the imaginary component (out-of-phase with
the wall velocity) and the total magnitude of the pressure increase with decreasing β .

3.2.3. Energy dissipation

In figure 13 we present results for the (scaled) rate of energy dissipation in the
channel due to off-axis flow for γ ∈ [0.01, 1]. Note that α = γ /β , and hence increasing
β reduces the effects of compressibility; see (32). In the limit of large inertia (β 
 1),
we find that the energy dissipated decreases with increasing β , as is expected for
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incompressible flow; increasing β can be easily achieved in practice by reducing the
viscosity while holding the density constant. However, in the asymptotic limit β 	 1,
the energy dissipated decreases with decreasing β; see § 3.5 for a discussion of higher-
order mechanisms at small β that are not included in the present model. This latter
phenomenon is due to the increasing effects of compressibility that limit the volume
flux into the channel and hence reduce the rate-of-strain as illustrated in figure 11.
In the intermediate regime α = γ /β ∼ O(1), we find that energy dissipation features
two maxima, with a local minimum between these peaks. The mechanism for this
behaviour arises from competing dissipative effects in the rigid lead channel and the
cantilever proper, as we now discuss.

Rigid lead channel (x < 0). To begin, we focus on the rigid lead channel and consider
the asymptotic limit of incompressible flow α 	 1, which corresponds to β 
 1 at fixed
γ . As viscosity increases in the high inertia limit, the Reynolds number β decreases
whereas the normalized acoustic number γ remains fixed. In this incompressible
limit, energy dissipation rises with increasing viscosity. However, the pressure also
rises simultaneously and ultimately reaches a level where it can significantly compress
the fluid. This reduces the shear velocity gradients, which in turn reduces energy
dissipation. Energy dissipation ultimately approaches zero with increasing viscosity.
These competing effects lead to the overall feature of an enhancement of energy
dissipation at high inertia, and a reduction at low inertia as the viscosity increases
(β decreases). This in turn explains the existence of a maximum in energy dissipation
at intermediate β .

Cantilever proper (x > 0). We now examine energy dissipation in the cantilever
proper. Unlike the rigid lead channel, the peak in energy dissipation does not occur
at the transition point from incompressible to compressible flow, but is due to a peak
in flow reversal that results from compressibility effects. To understand this, we note
that as viscosity increases, the pressure rises high enough to significantly compress
the flow and this leads to reversal in the pressure gradient. This in turn results in
flow reversal in this region (see figures 11 and 12) and thus a reversal in the sign of
the shear velocity gradients. Importantly, in the limit of infinite compressibility, the
shear velocity gradients are zero. As such, there must exist an intermediate value of
viscosity that leads to a maximum in the reversed flow velocity and hence a maximum
in energy dissipation. This salient feature explains the existence of maximum energy
dissipation at intermediate values of β for this region (x > 0). In general, this critical
value of β differs from that for the rigid lead channel discussed above. This shift in
the position of the maximum in the cantilever proper explains the double humped
feature in figure 13, which is obtained by superimposing the energy dissipation in the
cantilever proper (x > 0) and rigid lead channel (x < 0). The distribution of energy
dissipation throughout the cantilever/rigid channel system shown in figure 14 reveals
that the rightmost maximum in β space is due to the rigid lead channel, whereas the
leftmost maximum is due to the cantilever proper. Variation in the shape of the total
energy dissipation curves in figure 13 for increasing γ is due to the increasing effects
of fluid inertia at large values of β .

The competing compressibility effects in the rigid lead channel and cantilever
proper, which lead to maxima at different values of β , thus give rise to a local
minimum in the energy dissipated at intermediate values of β . Importantly, the
above discussion establishes that the rightmost maximum in β space results from
enhancement in the magnitude of the pressure, whereas the leftmost maximum is
caused by the pressure gradient (not the magnitude of the pressure). This feature
allows for tuning of the positions of these two maxima in β space, by appropriate
adjustment of the dimensions of the cantilever/lead channel system. As such, the β
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Figure 14. Normalized rate of energy dissipation distribution (per unit volume) for γ = 0.01
and increasing β = 0.001, 0.003, 0.01, 0.03, 0.1, 1 (a–f ). Energy (per unit volume) scale is

Ws = 4πρ0 |us |2.

distance between the observed local maxima in energy dissipation will depend on the
ratio of the cantilever length L to that of the rigid lead channel Lc. This feature is
illustrated in figure 15. Note that the position of the leftmost maximum is independent
of Lc/L (at fixed cantilever length L), as expected, because this arises from flow in
the cantilever proper (x > 0). The rightmost maximum, however, depends strongly on
Lc/L, because by changing the length Lc of the rigid lead channel, its contribution
to the total energy dissipation is enhanced or reduced. By increasing the length of
the rigid channel Lc, the position of the rightmost maximum occurs at higher values
of β , because this enhances the pressure in that region leading to an earlier onset of
compressibility effects. Thus, increasing the rigid channel length amplifies the effect
of compressibility as expected. The enhanced topmost curve in figure 15 results from
strong overlap in the flow within the cantilever proper and rigid channel, due to a
short rigid lead channel.

Maximum pressure. We continue our discussion of the off-axis flow problem by
examining the maximum pressure generated in the fluid channel. The pressure in
various practical flow regimes scales in the following manner with respect to the
explicit cantilever and fluid properties:

P ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μω

(
z0

hfluid

)(
a

hfluid

)
: β 	 1, α 	 1 (low inertia, incompressible),

ρ0ω
2z0a : β 
 1, γ 	 1 (high inertia, incompressible),

ρ0c
2
(z0

L

) ( a

L

)
: β 	 1, α 
 1 (low inertia, compressible),

(58)
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Pressure scale is Ps = ρ0c

2us/(ωL) and is appropriate for the low inertia compressible limit, i.e.
β 	 1 and α 
 1; see (58). Length of the rigid lead channel equals the cantilever length, i.e.
Lc = L.

where a is the amplitude of oscillation. Note that numerical factors are ignored
in (58). From (58), we see that increasing the oscillation amplitude, a, and off-axis
placement, z0, of the fluid channel always enhances the maximum pressure, as required.
Figure 16 gives results for the magnitude of the maximum normalized pressure in
the fluid channel as a function of fluid inertia and compressibility. The pressure scale
in the low inertia compressible limit (β 	 1, α 
 1) is used throughout, because this
does not change as the cantilever is (i) uniformly reduced in size, nor (ii) as the fluid
viscosity is varied. Both situations are considered below.

From figure 16, we observe that as the fluid viscosity is increased (β decreases),
the maximum pressure also increases as expected. This is particularly pronounced
in the low inertia regime (β <O(1)) where the viscous boundary layers generated at
the surfaces strongly overlap. In the limit of very low inertia (β 	 1), the pressure is
high enough to induce significant dilation of the fluid, and this relaxes the monotonic
increase in pressure as viscosity is increased note that the normalized maximum
pressures are of order unity in this limit, as required by the pressure scale chosen.

Next, we examine the effects of miniaturization on the maximum pressure. From (33)
we find that as the cantilever geometry is uniformly reduced in size, the characteristic
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dimensionless parameters for the flow vary according to the following scaling relations:

β ∼ hcant

(
hfluid

L

)2

, γ ∼
(

hcant

L

)2

, α ∼ 1

hfluid

(
hcant

hfluid

)
. (59)

From these relations it is clear that the effects of compressibility are enhanced as the
cantilever is miniaturized (α increases), while the effects of fluid inertia are reduced
(β decreases). In contrast, the normalized wavenumber γ remains constant
throughout, indicating that the acoustic properties of the flow are unperturbed by
miniaturization. From figure 16, it follows that miniaturization, which results in a
reduction in β at constant γ , will in turn enhance the maximum pressure in the
device.

Cavitation. Using the results presented in figure 16 for the off-axis flow maximum
pressure, we now assess the possibility of inducing cavitation in the fluid channel.
This is expected to occur when the maximum (negative) pressure, generated by the
cantilever oscillation, decreases the ambient pressure below the vapour pressure of
the liquid contained in the channel; see Batchelor (1974) for further discussion. Since
the vapour pressure of water and glycerol at room temperature is well below 1 atm
(∼100 kPa), this requires the maximum pressure to be comparable to 1 atm.

We note that pressure due to the on-axis flow scales as ρ0ω
2hfluida, and is always

given by the inviscid flow result in (9). Significant pressures can also be generated by
the on-axis flow, but are normally smaller than those that can be generated by the
off-axis flow. The effects of on-axis flow are thus not considered here.

For the purpose of illustration, we consider one of the cantilevers studied by Burg
et al. (2009); see cantilever B in § 3.4, where its dimensions are listed. We assume a
typical oscillation amplitude of a = 100 nm throughout. For water, the dimensionless
parameters are β =12 and γ = 0.035, and a maximum pressure of 2.1(z0/hfluid ) kPa
is obtained, where z0 is the off-axis placement of the fluid channel as specified above.
Note that the maximum off-axis placement in any device is z0 = (hcant − hfluid )/2;
for this cantilever device (z0/hfluid )max = 2/3. Therefore, regardless of the choice of
off-axis placement, the maximum pressure induced in water is well below the pressure
required to achieve cavitation. Using pure glycerol, we find β = 0.010 and γ = 0.023,
and a maximum pressure of 47(z0/hfluid ) kPa. Therefore, even if the fluid channel is
placed as far as possible from the neutral axis of the beam, i.e. z0/hfluid is maximized,
pressures in excess of 1 atm in glycerol are not predicted to be possible. Therefore,
current devices are thus not prone to these effects.

From (58), it is clear that to increase the maximum pressure, the cantilever must
be made shorter (thus increasing the resonant frequency), and the off-axis channel
position z0 and oscillation amplitude a increased.

If the length L of cantilever B is reduced to 100 μm, while keeping all other
dimensions identical, the picture changes dramatically. Using water, the dimensionless
parameters are β = 54 and γ = 0.16, and the maximum pressure becomes 47(z0/hfluid )
kPa. Since the maximum off-axis placement in this device is (z0/hfluid )max = 2/3, the
maximum possible pressure is 31 kPa, which is approximately a third that required
to induce cavitation. However, using pure glycerol, we obtain β = 0.045 and γ = 0.10,
and a maximum pressure of 210(z0/hfluid ) kPa; cavitation is therefore possible in this
latter case.

Further reduction in length to 50 μm yields 1900(z0/hfluid ) kPa and 840(z0/hfluid )
kPa in water and pure glycerol, respectively. As such, even a small off-axis placement
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of the fluid channel is predicted to allow for cavitation in both water and pure
glycerol.

Finally, we note that the model implicitly assumes that fluid density variations due
to compressibility are small, allowing for linearization of the governing equations
and equation of state. Pressures in the vicinity of 1 atm induce density variations
of less than 0.01 %. Thus, the underlying model assumptions remain intact when
exploring the onset of cavitation. Once cavitation is achieved, however, the continuum
approximation breaks down and applicability of the model must be drawn into
question.

3.3. Complete flow

We now combine the flow fields for the on-axis and off-axis problems to obtain the
complete flow for the cantilever/rigid lead channel system. To begin, we examine the
limiting case of incompressible flow and study the energy dissipation in the system.

3.3.1. Incompressible flow

We again focus on the normalized quality factor F (β). In the limits of small and
large inertia, the asymptotic behaviour of this function for the fundamental mode of
vibration can be explicitly derived from the exact solution

F (β) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

38.73β

β2 + 564.6Z̄2
0

(
1 +

β2

8400

) : β → 0,

√
β

6.573 + 1.718Z̄2
0

: β → ∞.

(60)

Equation (60) clearly demonstrates that off-axis placement of the channel can exert a
strong influence on the quality factor. The overall effect as the viscosity is varied will
now be described. We restrict ourselves to the case where the off-axis position of the
channel Z̄0 is non-zero and significantly less than one channel thickness, i.e. Z̄0 	 1,
which is the practical case commonly encountered. Note that decreasing the viscosity
(at constant density) will increase β .

Starting in the low inertial limit, we observe from (60) that the quality factor
will increase with increasing β , i.e. decreasing viscosity. In this regime, oscillatory
inflow/outflow within the channel, due to off-axis placement, dominates the inertial
mechanism for dissipation previously described for on-axis channels. Importantly, this
additional flow has a non-zero effect in the limit of zero fluid inertia, which gives rise
to a strong deviation from the on-axis result in the limit as β → 0. This behaviour is
present for β <βmax , where

βmax = 23.76Z̄0 + O
(
Z̄2

0

)
. (61)

Note that this asymptotic formula is a good approximation for Z̄0 < 0.5, exhibiting a
maximum error of 14 %.

At the critical point (β = βmax), the quality factor attains a local maximum value.
Importantly, for off-axis positions significantly less than one channel thickness
(Z̄0 	 1), this critical value for β is smaller than that required for the minimum
quality factor predicted by (31), i.e. βmin = 46.434. Consequently, increasing β further
will decrease the quality factor, with the inertial mechanism previously described for
on-axis flow dominating the inflow/outflow in the channel, until a minimum quality
factor is reached at βmin =46.434. Further increase in β will then enhance the quality
factor as before. These salient features of the quality factor are illustrated in figure 17.



Energy dissipation in microfluidic beam resonators 241

0.1 1 10 102 103 104

0.1

1

10

Large β

Small β

Exact

Z
–

0 = 0.1F(β)

β
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(see (60)) and large β solution (see (60)) are shown. Results for off-axis placement: Z̄0 = 0.1.

The results in figure 17 for the case of off-axis placement are to be compared
with those in figure 4 for on-axis placement. Note that the dominant features of the
quality factor profile are accurately predicted by the asymptotic results in figure 17.
We also observe that off-axis placement dominates the behaviour only for low inertia,
i.e. small β .

Importantly, the above-described turnover in the quality factor (see figure 17) at
intermediate values of β disappears for

Z̄0 ≡ z0

hfluid

> 0.64515, (62)

at which point the quality factor increases monotonically with increasing β .

3.3.2. Compressible flow

The effects of compressibility on energy dissipation are now included. Importantly,
compressibility will only affect the velocity field for the off-axis flow problem, as
discussed above. However, since the total flow is given by superposition of the off-
axis and on-axis problems, compressibility can affect the entire quality factor. In
figure 18, results are presented for a typical normalized wavenumber of γ = 0.03,
and for a range of different off-axis positions Z̄0 ∈ [0, 0.1]. Again, we consider the
practical case where Lc = L.

Note that the quality factor in figure 18 is unaffected by off-axis channel placement
for β > βmin = 46.434, and is therefore independent of fluid compressibility. This
indicates that inertial effects present in the on-axis flow problem dominate any
off-axis phenomena. The behaviour for β < βmin = 46.434, however, is dramatically
different and is strongly influenced by fluid compressibility; cf. figures 17 and 18
for Z̄0 = 0.1. The incompressible solution displays a clear maximum in quality factor
at β ≈ 1, whereas the compressible solution shows two local maxima at β ≈ 10 and
β ≈ 0.1, and ultimately a uniform increase as β decreases. This demonstrates that
even for small off-axis channel placement, fluid compressibility can have a profound
effect.

Once compressibility begins to affect energy dissipation with decreasing β , the
quality factor remains approximately constant over decades in β . We also observe
that the quality factor exhibits small oscillations in magnitude as β varies; this is in
line with the energy dissipation results for the off-axis flow problem; cf. figures 13
and 18.
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In figure 19, we examine these effects for larger Z̄0 corresponding to off-axis
channel placements up to one channel thickness. From these results it is clear that
the quality factor always ultimately increases at lower β , regardless of the value of
Z̄0. This behaviour contrasts directly with that for incompressible flow, for which the
quality factor decreases monotonically with decreasing β for small β . We also see a
slight reduction in the quality factor for β >βmin =46.434, which is in line with the
incompressible result; see (60).

As β decreases below βmin, we can observe two distinct local maxima in figures 18
and 19. The position of the maximum closest to βmin = 46.434 corresponds to the
onset of the effects of off-axis channel flow, which enhances dissipation due to the
pumping of fluid into and out of the channel. The second maximum furthest from
βmin occurs at a single value of β , regardless of the off-axis channel position Z̄0

and coincides with the energy dissipation minimum discussed in figure 13; note that
energy dissipation is inversely proportional to the quality factor. We remind the reader
that this phenomenon originates from competing compressibility effects in the off-axis
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channel system and occurs at α = γ /β ∼ 0.3. Note that we require α ∼ O(1) for the
effects of fluid compressibility to be significant; see (32).

In figure 20, we examine the effects of varying compressibility at fixed off-axis
channel position Z̄0. Note that compressibility significantly modifies the behaviour
for β < βmin = 46.434 and reduces dissipation due to off-axis channel placement, i.e. the
quality factor increases with increasing γ . Furthermore, the maxima in F (β) previously
observed for incompressible flow are displaced in β space. In particular, the leftmost
maximum arising from competing compressibility effects in the off-axis problem now
appears at different values of β . Significantly, the value of α at which this maximum
occurs is approximately constant regardless of the value of Z̄0 and γ for γ < 0.1, as
illustrated in figure 21. In this regime, the maximum occurs at

αmax =
γ

β
=

ωμ

ρc2

(
L

hfluid

)2

= 0.287, γ → 0. (63)

The observed increase in αmax for higher values of γ is due to inertial effects in the
fluid becoming increasingly important; note that β increases with increasing γ since
β = γ /α. Importantly, the physical origin of this maximum is independent of the
on-axis problem, but the competing effects of the on-axis and off-axis problems can
affect the position of this maximum. This explains the observed deviation in αres with
decreasing Z̄0. In the formal limit Z̄0 → ∞, αres plateaus to a constant value for fixed
γ ; see figure 21.
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to evaluate F (β) from measurements of Q is indicated; see (55). This uncertainty allows the
central large dots to be collectively shifted within the prescribed bounds, along the slanted
lines, as shown. Q measured to < 1 % uncertainty (Burg et al. 2009). (a) Cantilever A with 8
μm channel (Z̄0 = 0.06); (b) cantilever B with 3 μm channel (Z̄0 = 0.14).

3.4. Experiments and comparison

We now compare the predictions of the above theory with measurements taken on two
different cantilevers using a glycerol/water mixture; this enables the inertia parameter
β to be varied over 3 orders of magnitude. The two cantilevers have different fluid
channel and cantilever thickness, but are identical otherwise. The oscillation amplitude
was systematically varied to ensure that the linear limit was observed. In all cases, the
measured quality factors and resonant frequencies were found to be independent of
the oscillation amplitude as required; maximum oscillation amplitude used was ∼50
nm. The measured quality factors in the presence and absence of liquid are given in
figure 2 of Burg et al. (2009), and all other experimental details are included in that
reference.

Properties of the two cantilevers used are:
A. Channel: hfluid = 8±0.6 μm, bfluid = 16±0.25 μm, L =204±0.5 μm, Lc = 207.5±

0.25 μm; Cantilever: hcant = 12 ± 1.5 μm, bcant = 33 ± 0.25 μm, length: 210 ± 0.5 μm,
resonant frequency (cantilever filled with air): fres =426.8 kHz.

B. Channel: hfluid = 3 ± 0.3 μm, bfluid = 16 ± 0.25 μm, L = 204 ± 0.5 μm, Lc =207.5 ±
0.25 μm; Cantilever: hcant = 7 ± 1.5 μm, bcant = 33 ± 0.25 μm, length: 210 ± 0.5 μm,
resonant frequency (cantilever filled with air): fres =212.5 kHz.

Since off-axis placement Z0 of the fluid channel is unknown, it is used as a fitting
parameter in the following comparison. Critically, the theoretical solution depends
strongly on Z0, as illustrated in figures 18–20. This enhances the precision in fitting
Z0, which can then be compared with expected values due to fabrication tolerances,
as we shall discuss below.

The precision of measured values for F (β) shown in figure 22 is primarily limited by
that of the channel thickness hfluid (which is known to within ∼10 %). This is because
the relation between the quality factor Q and F (β) depends on the cube of hfluid ;
see (55). Systematic uncertainty in hfluid will therefore collectively shift the measured
values of F (β), as illustrated in figure 22; small open circles indicate the bounds of
this shift, whereas the large circles indicate the expected values. The statistical error
in measurements of Q is less than 1 % (see Burg et al. 2009) and is indiscernible in
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Figure 23. Plot of F (β) function for quality factor as a function of the channel aspect ratio
Achannel using the exact solution (A 2).

figure 22. As such, the observed variations in the measured F (β) as a function of β ,
for a fixed hfluid , completely dominate the measurement error.

In figure 22(a), we present a comparison of the theoretical model with measurements
for cantilever A, which possesses a fluid channel of square cross-section. We remind
the reader that the model is derived using an Euler–Bernoulli/lubrication formulation,
and as such, is formally valid for cases where the cantilever length L greatly exceeds
the cantilever width bcant , and where the channel width bfluid greatly exceeds its
thickness hfluid . Cantilever A possesses the properties L/bcant ≈ 6 and bfluid/hfluid ≈ 2,
which is somewhat outside the expected regime of validity of the model. Nonetheless,
we observe from figure 22(a) that the (compressible) model predicts the salient features
of the response, when a (scaled) off-axis channel position of Z̄0 = 0.06 is chosen. This
corresponds to Z0 = 0.5 μm, which is in line with the expected uncertainty in the
microfabrication process; note that Z0 cannot be measured directly in these devices.
For completeness, variations in the fluid compressibility between the expected bounds
for glycerol/water are also shown in figure 22 (shaded regions). This results in
a relatively minor variation in comparison to the incompressible theory, which is
unable to describe the measurements in the low β regime, regardless of the choice
of Z̄0.

Interestingly, we find that at high β , the measured quality factor exceeds the model
prediction, indicating that dissipation in the real system is less than that predicted.
Use of the arbitrary channel aspect ratio theory (see the Appendix) in this regime
does not reconcile theory and measurements; cf. figures 22(a) and 23. Importantly, the
arbitrary channel aspect ratio theory in the Appendix still requires that the cantilever
length greatly exceed its width, and as such, the comparison between theory and
measurements indicates that finite L/bcant and L/hcant effects may be behind the
observed discrepancy between theory and measurements.

A possible explanation for this observed reduction in dissipation (higher Q) in
comparison to the theoretical model is now outlined. A cantilever of finite length
is expected to provide extra constraints on the on-axis flow, particularly at the free
end of the cantilever where the flow must move in tandem with the beam. This
will reduce the strain rate in that region (of maximum amplitude) and decrease the
overall energy dissipation; this is observed in both the low and high β incompressible
on-axis regimes (3 < β < 300). For lower β , the off-axis (pumping) flow dominates and
the model yields results in reasonable agreement with measurements. We emphasize,
however, that the precise mechanism giving rise to the measured discrepancy can only
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be rigorously established by calculating the next order correction for finite L/bcant

and L/hcant ; see § 3.5.
Complementary results for cantilever B are given in figure 22(b). In comparison

to cantilever A, this cantilever possesses a significantly thinner fluid channel with
bfluid/hfluid ≈ 5. We note that the agreement between theory and measurements is
greatly improved, with the model accurately predicting the features of the measured
response. In this case, an off-axis channel position of Z̄0 = 0.14 (Z0 = 0.4 μm) is
required to yield good agreement between measurements and theory; this absolute
offset is similar to that for cantilever A and is again in line with expected
uncertainty in channel placement. This improvement in agreement is consistent with
the assumption inherent in the model that the fluid channel width greatly exceeds its
thickness. Again, we find that the incompressible theory is incapable of predicting the
measurements with the leftmost maximum in figure 22(b) absent (see dashed line).
Fluid compressibility is therefore found to be of paramount importance in describing
the dynamics of these devices, and the above comparisons serve to demonstrate the
validity of the new model.

It is important to note that the quality factor due to dissipation in the fluid can be
comparable in magnitude to the intrinsic quality factor of the cantilever structure, as
observed by Burg et al. (2007). This feature can result in identical quality factors when
air or water is used, as we now discuss. Injecting water into the fluid channel increases
the mass of the cantilever, which lowers the resonant frequency. This increases the
intrinsic quality factor (since it is a scaled quantity) provided the intrinsic damping
coefficient is frequency independent, which is assumed in the above experimental
comparison. As a result, the intrinsic quality factor of the device with water in the
channel is higher than that with air, i.e. Qintrinsic

WATER >Qintrinsic
AIR . Importantly, the fluid

quality factor for air is orders of magnitude higher than the intrinsic quality factor
Qintrinsic

AIR , whereas for water the intrinsic and fluid quality factors are of comparable
magnitude. The net effect is that the total quality factor in air is well described by
the intrinsic value Qintrinsic

AIR , whereas in water the total quality factor is lower than
Qintrinsic

WATER . These competing effects can conspire to give identical quality factors in air
and water, as observed by Burg et al. (2007).

3.5. Further theoretical considerations

We close by discussing some technical issues that are pertinent to (i) further theoretical
development and (ii) implementation of the theoretical model in practice. Importantly,
the model presented in § 2 has been derived self-consistently in the formal asymptotic
limit of narrow channel thickness and infinite cantilever length, i.e. L/bcant 
 1,
L/hcant 
 1 and bfluid/hfluid 
 1, and theories of equal order in both fluid and solid
mechanics have been used throughout. As such, all higher-order effects that depend
on finite channel thickness or cantilever length have been implicitly ignored. These
effects may become significant for cantilevers whose length does not greatly exceed
their width and thickness, or when the fluid viscosity is very large (very small β), as we
discuss below. Significantly, higher-order corrections due to these competing effects are
of equal order and, therefore, must be implemented simultaneously for development
of a self-consistent theory. We now outline the various competing higher-order
effects.

First, reducing the length of the cantilever, at constant thickness, will enhance
the effects of shear deformation that are implicitly ignored in Euler–Bernoulli beam
theory. These constitute a correction of O(hcant/L) which can be tackled approximately
using higher-order theories such as Timoshenko beam theory (Timoshenko & Young
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1968). Second, finite channel length ratio hfluid/L requires consideration of end-
effects (also of O(hcant/L)), which are completely ignored in the present theory.
This would require consideration of both inlet channel effects and relaxation of the
lubrication assumption used throughout. Third, curvature effects in the beam, which
have also been ignored, constitute a correction of O(hcant/L). Consequently, these
three phenomena contribute terms of equal order to the final solution and must be
considered simultaneously.

From (5) and (19), a scaling analysis of curvature effects reveals that they become
important when the viscous penetration depth becomes comparable to

√
hfluidL, i.e.

β � O(hfluid/L). This inequality is only satisfied in current devices (Burg et al. 2007)
when the fluid viscosity greatly exceeds that of water, i.e. when β is less than ∼0.1;
this corresponds to a viscosity greater than ∼100× that of water. While clearly not
providing a limitation in current devices in practical (biological) applications (Burg
et al. 2007), miniaturization by 2 orders of magnitude to nanoscale dimensions would
provide a regime where such higher-order effects become important. The above-
mentioned extensions would therefore constitute an important future direction in
theoretical development.

4. Conclusions
We have theoretically investigated the fluid dynamics in microfluidic cantilever

beam resonators (Burg et al. 2007). This involved development of a self-consistent
theoretical model that rigorously accounts for both the elastic deformation of the
beam and the resulting flow field in the channel. The principal underlying assumptions
in the model are that (i) the cantilever length greatly exceeds its width, so that Euler–
Bernoulli beam theory and a commensurate lubrication model for the fluid flow are
applicable, and (ii) the channel width greatly exceeds its thickness. Consequently,
the model presents a leading-order theory for this new class of microcantilever/fluid
system.

It was found that the flow dynamics of these devices depend not only on the
fluid density and viscosity but also on the fluid compressibility. This latter feature
is not exhibited in conventional microcantilevers immersed in fluids. As a result of
strongly competing effects in the flow, energy dissipation was found to be a non-
monotonic function of the fluid viscosity. This enables miniaturization of the device
while reducing energy dissipation. This highly desirable attribute contrasts strongly
with conventional devices, whose quality factor is degraded upon miniaturization, and
these new devices thus present a most favourable structure.

The non-monotonicity in energy dissipation results from competing effects due to
fluid inertia and fluid compressibility. In the high inertia regime, enhanced dissipation
is predicted with increasing viscosity, as may be expected intuitively. In the low inertia
regime, however, a combination of off-axis and on-axis flow phenomena contributes
to oscillations in energy dissipation with increasing viscosity. This behaviour depends
implicitly on the channel dimensions and its placement within the cantilever. These
generic features in turn enable considerable tuning of the energy dissipation landscape
through minor adjustments in the device structure.

The validity of the new theoretical model was demonstrated by comparison with
detailed measurements using fluids whose viscosities were varied over 3 orders of
magnitude. The characteristic features of the quality factor were well described by
the new model, which in turn explains the dominant underlying physical mechanisms.
Finally, a discussion was presented of the limitations and possible future extensions of
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the model. These involve development of a self-consistent theory to next order in the
channel length ratio. The theoretical model presented here is expected to be of signi-
ficant practical value in the design, application and development of these new devices.

This work was supported by the Institute for Collaborative Biotechnologies from
the US Army Research Office, the NIH Cell Decision Process Center, and by the
Australian Research Council Grants Scheme.

Appendix
In this Appendix, we examine the on-axis problem and relax the restriction that the

channel width greatly exceeds its thickness. In so doing, we present the exact solution
to the on-axis problem for a channel of arbitrary aspect ratio (channel width/channel
thickness). This is easily obtained by adding an extra velocity component to (13) that
accounts for the no-slip condition at the sidewalls of the channel, thus eliminating
the slip velocity at y = ±bfluid/2. This is performed using an eigenfunction expansion
to yield

v = A

⎛
⎜⎜⎜⎜⎝z̄ −

sinh

(
(1 − i)

√
β

2
z̄

)

sinh

(
1 − i

2

√
β

2

) +

∞∑
n=1

2iβ(−1)n+1 cosh
(√

(2nπ)2 − iβȳ
)

sin(2nπz̄)

nπ((2nπ)2 − iβ) cosh

(
Achannel

2

√
(2nπ)2 − iβ

)
⎞
⎟⎟⎟⎟⎠

× x̂ + (U0 + A(x̄ − x̄0)) ẑ, (A 1)

where the pressure remains identical to the inviscid solution given in (9), the y-
coordinate is again scaled by the thickness of the channel hfluid and the aspect ratio of
the channel (width/thickness) is Achannel . Importantly, (A 1) is applicable to cantilevers
with multiple channels provided bfluid is taken as the sum of all channel widths, while
retaining Achannel as the true aspect ratio of each channel; each channel is assumed
identical.

The exact solution for the function F (β) defined in (16) for the quality factor can
be written as

F (β) = 0.10758Achannelβ

∣∣∣∣ A

hfluid

∣∣∣∣
2 (∫ Achannel /2

−Achannel /2

∫ 1/2

−1/2

e : e∗dz̄ dȳ

)−1

. (A 2)

The asymptotic forms for F (β) in the limits of small and large inertia can be evaluated
directly from (A 2) to give

F (β) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

38.73

β

(
1 − 90

Achannel

∞∑
n=1

tanh(nπAchannel )

(nπ)5

)−1

: β 	 1,

0.1521
√

β

(
1 +

1

3Achannel

)−1

: β 
 1.

(A 3)

For the practical case of Achannel � 1, (A 3) is well approximated by

F (β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

38.73

β

(
1 − 0.3050

Achannel

)−1

: β 	 1,

0.1521
√

β

(
1 +

1

3Achannel

)−1

: β 
 1.

(A 4)
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From (A 4), we observe that for a square channel (Achannel = 1), the solution differs
from the limiting case of Achannel 
 1 by only ∼30 % in the limits of small and large
inertia. Interestingly, we find that by reducing Achannel , the quality factor increases
for small inertia, whereas for large inertia the quality factor decreases. The effect at
low inertia is due to the sidewalls limiting the inertial mechanism (secondary flow)
that drives dissipation, whereas at high inertia all dissipative effects are contained in
thin viscous boundary layers at the surfaces and are thus additive. These properties
are manifested in the entire F (β) curve shifting to higher values of β as the channel
aspect ratio Achannel is reduced; see figure 23. Nonetheless, this shift is small and has
negligible effect on the minimum value of F (β). The critical value of β where this
minimum occurs is β =46.4 for Achannel 
 1 and increases monotonically to β = 67.6
at Achannel = 1.

We therefore conclude that finite channel aspect ratio Achannel exerts a relatively
small effect on the overall dynamics of the on-axis problem.
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